TOSHIBA PHOTOCOUPLER GaAs IRED & PHOTO-TRIAC

TLP3051(S),TLP3052(S)

OFFICE MACHINE HOUSEHOLD USE EQUIPMENT TRIAC DRIVERSOLID STATE RELAY

The TOSHIBA TLP3051(S) and TLP3052(S) consists of a photo-triac optically coupled to a gallium arsenide infrared emitting diode in a six lead plastic DIP package.

Peak Off-State Voltage : 600V(Min)

Trigger LED Current : 15mA(Max)TLP3051

10mA(Max)TLP3052

On-State Current : 100mA(Max) Isolation Voltage : 5000Vrms(Min)

:UL1577,File No.E67349 **UL** Recognized

SEMKO Approved :SS EN60065

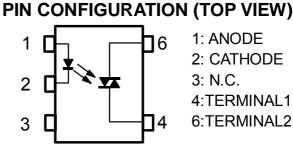
> SS EN60950, File No.9841102 :BS EN60065, File No.8385

BS EN60950, File No.8386

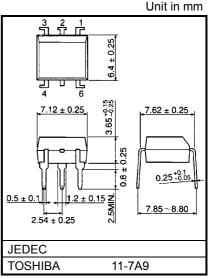
Option(D4)type

BSI Approved

VDE Approved :DIN VDE0884


Certificate No.68329

:890V_{PK} Maximum Operating Insulation Voltage Highest Permissible Over Voltage :8000 V_{PK}


(Note)When a VDE0884 approved type is needed, please designate the "Option(D4)"

Construction Mechanical Rating

	7.62 mm pich	10.16 mm pich		
	standard type	TLPXXXF type		
Creepage Distance Clearance Insulation Thickness	7.0 mm (Min) 7.0 mm (Min) 0.5 mm (Min)	8.0 mm (Min) 8.0 mm (Min) 0.5 mm (Min)		

- 1: ANODE
- 2: CATHODE
- 3: N.C.
- 4:TERMINAL1
- 6:TERMINAL2

Weight: 0.39 g

MAXIMUM RATINGS(Ta=25°C)

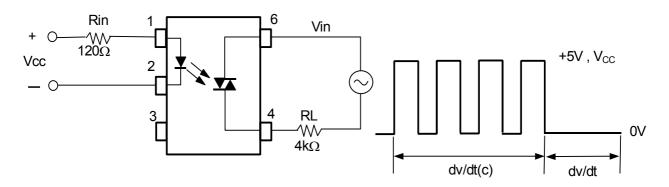
	CHARACTERISTIC	SYMBOL	RATING	UNIT		
	Forward Current	I _F	50	mA		
	Forward Current Derating (Ta≥53°C)	ΔI _F /°C	-0.7	mA /°C		
LED	Peak Forward Current (100µs pulse, 100pps)		I _{FP}	1	Α	
"	Power Dissipation		P_D	100	mW	
	Power Dissipation Derating (Ta≥25°C)		ΔP _D /°C	-1.0	mW/°C	
	Reverse Voltage		V _R	5	V	
	Junction Temperature	Tj	125	°C		
	Off-State Output Terminal Voltage	V_{DRM}	600	V		
	On-State RMS Current	Ta=25°C	I _{T(RMS)}	100	mA	
	Sh-State Nino Suitent	Ta=70°C	T(RMS)	50		
70R	On-State Current Derating (Ta≥25°C)	ΔI _T /°C	-1.1	mA /°C		
DETECTOR	Peak On-State Current (100µs pulse, 120pps)	I _{TP}	2	Α		
DE	Peak Nonrepetitive Surge Current (Pw=10ms,DC=10	I _{TSM}	1.2	Α		
	Power Dissipation	P _D	300	mW		
	Power Dissipation Derating (Ta≥25°C)	ΔP _D /°C	-4.0	mW/°C		
	Junction Temperature	Tj	115	°C		
Оре	rating Temperature Range	T _{opr}	-40~100	°C		
Stor	age Temperature Range	T _{stg}	-55~150	°C		
Lea	d Soldering Temperature (10s)	T _{sol}	260	°C		
Tota	al Package Power Dissipation	P _T	330	mW		
Tota	al Package Power Dissipation Derating (Ta≥25°C)	ΔP _T /°C	-4.4	mW /°C		
Isola	ation Voltage (AC,1min. , R.H.≤60%)	BVS	5000	Vrms		

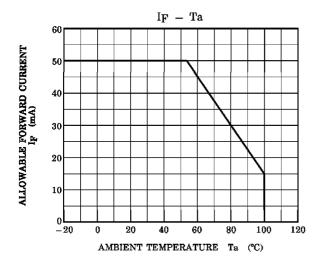
(Note 2)Device considered a two terminal device :Pins1,2 and 3 shorted together and pin4 and pin6 shorted together.

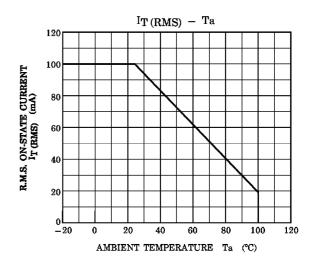
RECOMMENDED OPERATING CONDITIONS

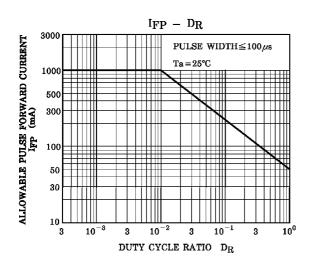
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V_{AC}	_	_	240	V _{ac}
Forward Current	I _F *	15	20	25	mA
Peak On-State Current	I _{TP}	_	_	1	Α
Operating Temperature	T_{opr}	-25	_	85	°C

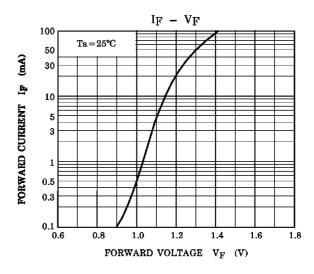
^{*}In The case of TLP3052


INDIVIDUAL ELECTRICAL CHARACTERISTICS(Ta=25°C)


	CHARACTERISTIC SYMBOL		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Forward Voltage	V _F	I _F = 10 mA	1.0	1.15	1.3	V
LED	Reverse Current	I _R	V _R = 5 V	_	_	10	μΑ
	Capacitance	Ст	V = 0, f=1MHz	_	30	_	pF
8	Peak Off-State Current	I _{DRM}	V _{DRM} =600V	_	10	1000	nA
0 _	Peak On-State Voltage	V_{TM}	I _{TM} =100mA	_	1.7	3.0	V
S	Holding Current	I _H	_	_	1.0	_	mA
⊥ E	Critical Rate of Rise of Off-State Voltage	dv/dt	Vin=240Vrms , Ta=85°C (Note3)	_	500	_	V/µs
D E	Critical Rate of Rise of Commutating Voltage	dv/dt(c)	Vin=60Vrms , IT=15mA (Note3)	_	0.2	_	V/µs

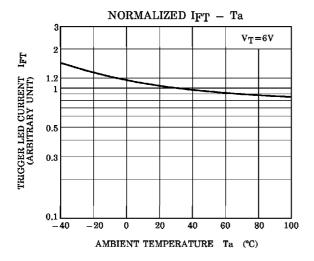

COUPLED ELECTRICAL CHARACTERISTICS(Ta=25°C)

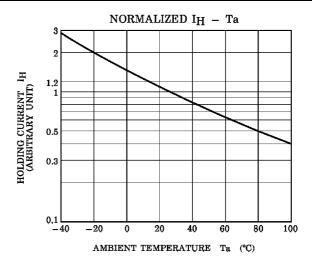

CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Trigger LED Current	TLP3051	l	V _T =6V	_	_	15	- mA
	TLP3052	I _{FT}		_	5	10	
Capacitance (Input to Ou	(Input to Output) C _s		VS=0 , f=1MHz	_	0.8		pF
Isolation Resistance		Rs	VS=500V(R.H.≤60%)	5×10 ¹⁰	10 ¹⁴	_	Ω
Isolation Voltage		BV_S	AC , 1minute	5000	_	_	Vrms
			AC , 1second,in oil	_	10000	_	
			DC , 1minute,in oil		10000		Vdc

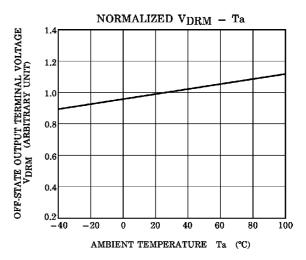

(Note 3)dv/dt TEST CIRCUIT

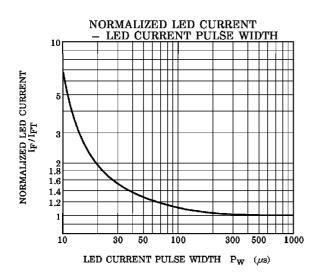












RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.